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Mean first-passage time for systems driven by pre-Gaussian noise: Natural boundary conditions
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In order to determine the mean first-passage time for systems driven by a superposition of suitably
scaled independent dichotomous Markovian processes (pre-Gaussian noise), the well-known absorbing
boundary conditions must be complemented in the generic case by a novel type of natural boundary con-
ditions. We treat explicitly a linear stochastic flow for the superposition of up to five dichotomous pro-
cesses and compare the analytic results with a digital simulation for these processes and an Ornstein-

Uhlenbeck process.

PACS number(s): 05.40.+j, 02.50.—r

In this paper we consider the mean first-passage time
(MFPT) for one-dimensional nonlinear stochastic flows
driven by a superposition of dichotomous processes and
show that in the generic case the absorbing boundary con-
ditions [1,2], well known for processes driven by a single
dichotomous Markovian process (DMP), should be com-
plemented by different types of conditions, which we call
natural boundary conditions [3]. The construction of the
correct boundary conditions for first-passage-time prob-
lems of non-Markovian processes is known to be a
difficult task [4].

According to the central-limit theorem, the superposi-
tion of N suitably scaled independent dichotomous pro-
cesses ePMPi, i=1,...,N, converges in the limit N — o
to an Ornstein-Uhlenbeck process (OUP). A finite num-
ber of DMP’s may serve as an approximation [5] that
may be used to attack the notoriously difficult problem of
the MFPT for nonlinear flows driven by an OUP [6-38].
In a series of papers, Kus, Wajnryb, and Wodkiewicz
[9,10] claim to have obtained an exact theory fully solv-
ing the problem of boundary conditions in this case. We
will show, however, that their approach [9,10] allows cal-
culation of the MFPT to leave only a restricted class of
intervals which is in the general case not generic. This
restriction which guarantees that there is a sufficient
number of absorbing boundary conditions forces the in-
terval to become smaller and smaller with an increasing
number of superposed DMP’s. So the typical task of cal-
culating the MFPT to leave an interval of a given arbi-
trary length cannot be solved without introducing
different, natural boundary conditions.

The problem of boundary conditions is not relevant in
the approach of Masoliver et al. [11-14] summing up
trajectories corresponding to all possible realizations of
the driving process since the resulting integral equations
automatically contain the boundary conditions. But this
procedure becomes increasingly complicated if the driv-
ing process possesses a larger number of states.

A general one-dimensional nonlinear stochastic flow
driven by a superposition of dichotomous processes is
given by the following Langevin equation:
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%, =f(x,)+g(x,)e, =F(x,,¢,) , (1)

where f and g are arbitrary functions, €, = 3N_;ePMM is

the driving process, and F(x,€) denotes the field for a
given realization of the noise €. The ‘“elementary”
DMP’s__ePMPi jump with rate a between the values
+A/V'N. The composed process €, takes N + 1 values,

€,=mA/VN , m&(—N,—N+2,...,N—2,N) (2)
with probability

1 N
The autocorrelation is
(€,€, ) =A%xp(—2alt—s]) . 4)

For stochastic trajectories starting at t=t¢, in x =x
with realization €1, T Em> the MFPT to leave an interval

I=[A,B]>x, is governed by [10]

—1=F, T, —NaTM+%<N+m):rm,2

+%(N—m)Tm+2 , (5)

where the shorthand notation T, =(38/3x,)7T,,(x,) and
F, =F(xg,€,,) is used and T, =0 for |n|> N. Equation
(5) can be obtained from the backward equation of the ex-
tended Markov process. The MFPT for the non-
Markovian process x, defined by Eq. (1) is then given by
the average of T,, with respect to the initial values of ¢,,
(T)=3 Prob(e, =€,,)T,, ,
m
where Prob( - -- ) is given in (3). The boundary condi-
tions necessary to integrate (5) depend on the location of
the interval I and will be specified in the following.
The driving process €, induces a flow F(x,,€,) on the x
axis. If for a given realization €, the flow F(x,¢,,)
points outwards at a given boundary of the interval, say,
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A, this boundary is absorbing,
T,(A4)=0. (6)

The interval is left immediately if one starts the process
at xy= A.

We show now that in the generic case it is not possible
to formulate N +1 boundary conditions of this type and
resolve the problem. For the general stochastic flow (1),
the support of the probability density is stratified into re-
gions, where the flow for a given realization of the noise
has a definite sign. This is exemplified in Fig. 1 for the
simple model

x=—ax+e¢,=F(x,¢e,), a>0 (7)

where €, is composed of either two or three independent
DMP’s.

If the interval under consideration lies fully in one of
the stripes, where the flow for a given realization €,, of
the noise does not change its sign, one finds N + 1 absorb-
ing boundary conditions as considered in [9,10]. This is,

x (a)

FIG. 1. Stratified support for model (7) for (a) N=2 and (b)
N =3, respectively, superposed DMP’s. The arrows indicate the
direction of the flow for all realizations €,, of the driving noise.
The flow F,, changes direction at x;, =¢,, /a. We are interested
in the MFPT to leave the interval I=[—L,L].

however, not the generic case, since with an increasing
number of DMP’s, the stripes become smaller and denser,
and an interval of a given length will eventually cover
several stripes.

For the model (7) the support is divided into N stripes
of the above kind. Suppose that the interval covers
several, say, M, stripes: one finds only N +2— M absorb-
ing boundary conditions for the N + 1 mean-first-passage
times T,,. For instance, for the interval I in Fig. 1 we
have only two absorbing boundary conditions.

The absorbing boundary conditions are supplemented
by M —1 natural conditions describing the behavior at
the boundaries x;, between adjacent stripes defined by
F(x;,e,)=0. At x;, the flow vanishes for the realiza-
tion €,, of the noise and the system coordinate x natural-
ly remains constant until the noise variable jumps from
€, to €, 1, 0r €,, _,. This occurs with probabilities

Pm,m+2=(NFm)/(2N) ,

respectively. The mean sojourn time in a given state is
1/(Na), so that
1 N+m

5y — T
TnCm)=Ng oy T

N—m
2N

(xp )+ Ty 42(x5)

(8)

We call these conditions resulting from the natural
behavior at specific points inside the interval, natural
conditions.

Conditions like Eq. (8) were first considered as natural
reflecting boundary conditions in [3] where the MFPT for
the Stratonovich model driven by a single DMP is calcu-
lated. The careful reader might suspect that (8) is a
trivial consequence of (5) for those points xj with
F(x,,,€e,)=0. This is not the case since the x;, also
define the singular points of the differential equations (5).
The behavior of the solutions 7', (x) in the neighborhood
of x,, depends on the character of these points. For the
linear model (7) all singular points represent saddle points
which lead in general to diverging solutions. This can be
avoided only by the requirement (8). Therefore it be-
comes clear that (8) are nontrivial conditions which
guarantee a regular (natural) behavior of the mean-first-
passage times T,,(x) in the sense that

lim F(x,e, )T, (x)=0.

x-»xm

Later, we will come back to this point in the case of a
nonlinear drift where the behavior may be more compli-
cated.

We now return to our example (7) and consider first
the case N =2 [cf. Fig. 1(a)], where (5) is a system of three
equations:

—1=(—ax+0V2A)T}, —2a(T,, —T,) , o=x%1
)
—1=—axTy—2aTy+a(T_,+T,,) .

To calculate the MFPT to leave the interval [ —L,L]
where L <x3, these equations are supplemented by
the two absorbing boundary conditions 7T _,(—L)
=T,(L)=0 [cf. (6)], and the natural condition [cf. (8)] at
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x5 _o=0, 4.00 — : -
T0(0)=2—1—+%[T_2(0)+T2(0)]. (10) <T> L
a 3.25

The solution of (9) is obtained by series expansion of the
times T,, and T, about x,=0 (in the remainder we drop
the subscript O which specifies the starting point):

T_,(x)= f‘, bix*, (11
k=0
To(x)= i cpux (12)
k=0

where the coefficients b, and c¢,; have to be determined
recursively. The symmetry of the problem implies
Ty(x)=T_,(—x) and Ty(x)=Ty(—x). The natural
condition (10) for T4(0) gives cq=1/(2a)+b,. Compar-
ison of coefficients in (9) in order x° yields b; =V2/A.
For | = 1, we obtain the recursion relations

(2l—1)+2a

a
bZI:_ ZIX/EA b21_1 ) (13)
la (2la +4a)
by =— 2 b, , (14)
A+ QI+1)V2A(a+a) ¥
a
U=y gt (15

Finally, in a given order of the expansion, b, is deter-
mined, e.g., by T,(L)=0.

The convergence of the series (11)
guaranteed for x €[ —L,L] and L <x} since

and (12) is

khm bk/bk_,=1/xs_2 5

so that, for large k, we have
[bex* /by _ i x* e |x /x5 <1 .

For L =x3, the interval cannot be left and the MFPT
diverges.

In the same way the cases with N >2 can be solved.
The calculations are straightforward but lengthy.

For a set of parameter values we compare for N =2
and 3 a digital simulation with a numerical summation of
the series expansion up to 50 terms (see Fig. 2). We also
include in this figure the results of a simulation for an
Ornstein-Uhlenbeck process with corresponding parame-
ters.

The digital simulation of dichotomous noise is especial-
ly easy since it jumps with rate a only between two states
+A. To get a realization of this process, we use [15] that
the sojourn time in one state is exponentially distributed,
®(7)=aexp(—ar). Exponentially distributed sojourn
times 7; can be obtained from

7= —(1/a)ln(1—u;),

where the u; are random numbers uniformly distributed
on the unit interval.

If the driving noise is an Ornstein-Uhlenbeck process
7, with zero mean and autocorrelation

2.50

1.75

l

100 \ 1 I 1
-0.6 0 0.6

FIG. 2. MFPT to leave [—L,L] for model (7). For a=2,
a=A=1, L=0.6, the results for the superposition of two and
three DMP’s (dotted line and dashed-dotted line, respectively)
are compared with those of a digital simulation (open triangles
and open squares, respectively). Also for a single DMP we com-
pare the exact result [1,13] with a digital simulation (thick solid
line and open circles). The solid circles are obtained from a
simulation of an OUP with corresponding parameters. The
averages are taken from 10* realizations.

(n,m,)=(D /7, )exp(—|t—s|/7,), (16)

we choose 7, =1/(2a) and D =A?/(2a) such that (4) and
(16) become equivalent. In order to perform the digital
simulation, we have to consider the equation of motion

; 1 V2D
n=——mn+
TC

& (17

Te

where £, is a Gaussian white noise with (£,)=0 and
(&,€,)=58(t—s). Integrating (17), one obtains [16]

n(t+h)=exp(—h /7. )n(t)+z(t,h), (18)

where z(t,h) is Gaussian with vanishing mean and
second moment

(z2(t,h))=(D /7,)[1—exp(—2h /7,.)] .

These Gaussian random numbers z; can be obtained with
the help of the Box-Mueller algorithm from two indepen-
dent random numbers u; and v; which are uniformly dis-
tributed on the unit interval

z;={—(2D /7)1 —exp(—2h /7,)]In(u;)}'/* cos(2mv;) .

In this way a realization of the driving noise is generated
and (7) can be integrated with a Euler procedure [16].

As a second example, we consider free diffusion, X =¢,
[1,2,11-13], i.e., the previous model (7) for a=0. The
motion is now unbounded. We will give the results for
the MFPT to leave the interval [—L,L] for ‘“pre-
Gaussian noise” up to N=5. For m <0 and m >0 the
boundary conditions are obviously absorbing,
T,(—L)=0 and T,,(L)=0, respectively. For even N,
the case m =0 is possible, where the flow vanishes at any
point of the interval. In the mean, the process waits for
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time 1/(Na) and jumps then to m =+2 or m = —2 with
equal probabilities ;. Thus, at any point of the interval
we have

To(x)=7v1;+%[T_2(x)+T2(x)] . (19)
This is in complete analogy to the natural condition dis-
cussed before and allows one to reduce the number of
N +1 equations (5) by eliminating Tj(x). In contrast to
a >0, where we solved the system of differential equa-
tions (5) by series expansion, here it is possible—in
principle—to give an exact analytic solution since (5) is
now a system with constant coefficients. The solutions
for N=1 (cf. [1,2,11-13])) and N =2 are

<T>N=1———Z"7<L2—x2)+§ , (20)
(THYN=2="2% (12— x2)+ V2L +L 21
A? A 4a

For N =3, 4, and 5, the solutions have been obtained by
computer algebra, calculating the eigenvalues and eigen-
vectors of a (N +1)X (N +1) or N XN matrix, for odd or
even N, respectively. The integration constants can be
determined with the help of the boundary conditions as
solutions of a set of algebraic equations. The expressions
are rather lengthy and cannot be given here. For typical
parameters the results are shown in Fig. 3 and compared
with a digital simulation for the OUP.

In the Gaussian white-noise limit, a— o, A— o0 with
a/A? finite, for any superposition of N DMP’s, one ob-
tains T,,=1T,, 4, for each allowed value of m and the
MFPT is governed by (T)"'=—2a /A2

Let us now discuss the natural conditions (8) for gen-
eral nonlinear systems (1). Here, in contrast to linear sys-
tems, we can find stable and unstable fixed points of the
deterministic dynamics which enlarge the number of
singular points x,, of the differential equations (5). Then
the character of these points plays a decisive role, as can
be seen from the following example. A simple model
which shows such a behavior is the bistable system
x =x(1—x?%)+¢, for the superposition of two DMP’s of
suitable amplitude such that the support of the stationary
probability density is connected and contains the three
fixed points of the deterministic dynamics. We also as-
sume that the interval I lies fully inside the support.
Considering the differential equation (5) for T(x), one
finds at x5 ==x1 and x3 =0 two saddle points and a node,
respectively. In order to connect the solution between a
saddle and a node, we need to employ condition (8) only

1.80

<T>
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FIG. 3. MFPT to leave [ —L,L] for free diffusion, x =¢,, for
a single DMP (thick solid line), and the superposition of two,
three, four, and five DMP’s (dotted line, dashed-dotted line,
dashed line, and thin solid line, respectively). For a=2, A=1,
and L =0.6, we compare these results with a simulation of the
OUP (solid circles) with corresponding parameters. The aver-
ages are taken from 10* realizations.

at the saddle where a continuous solution of (5) is select-
ed. At a node all solutions are finite and, hence, (8) is au-
tomatically satisfied at such a point. If the interval I con-
tains, for instance, two saddle points, the two uniquely
defined finite solutions which come from these points
continuously match at the node that always exists be-
tween two saddle points. The reader could be puzzled by
the observation that the number of boundary conditions
(even absorbing or natural alone) may be larger than the
order of the system of differential equations. We have
shown, however, that all these conditions have a well-
defined physical meaning. By including the natural
boundary conditions, it is guaranteed that there are not
fewer conditions than necessary to integrate the system.
Finally, we note that a generalization to stochastic flows
driven by a superposition of nonsymmetric dichotomous
processes or by different discrete multivalued Markovian
processes is straightforward.
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